

Bar Shape

Dimensions

Pure Lead

Pure Tin

From Ounces to Tons No job too big or too small

390 Millen Road, Rear Unit, Stoney Creek, Ontario, L8E 2P7

Toll free 866-979-7911 Phone 905 297 7911 Fax 905 385 2614

Email: info@alchemyextrusions.com

White Metal Bearing Alloys (Babbitt Metal) - Lead and Tin Based

1 4

Pig 17-1/2" x 4" x 3-1/2" (L x W x H) 55 LB 35 LB

10 LB 6-1/2 LB

Ingot

10-3/4" x 2" x 1-1/4"

 $(L \times W \times H)$

Margash 26" x 2" x 1-1/2" (L x W x H) 25 LB 16 LB

Tin Based Alloys

Marine 11D	SNSB5CU4
No. 1 (ASTM #1)	SNSB4.5CU4.5
Marine 11R	SNSB7.75CU2.75
Nickel Genuine (ASTM #2)	SNSB7.5CU3.5
Marine 11	SNSB5.75CU5.25
Diesel Special	SNSB6.75CU5.5
No. 11 (ASTM #11)	SNSB6.75CU5.75
SAE 11	SNSB7.5CU6.5
Imperial Genuine	SNSB7CU7
Turbine	SNSB7CU8
Royal Amature	SNSB8.25CU8
Super Tough (ASTM #3)	SNSB8CU8

Lead Based Alloys

No. 13 (ASTM #13)	PBSN6SB10
Mill Anchor	PBSN5SB12
Durite (ASTM #15)	PBSN1SB16
Star	PBN5.25SB14
Silvertone	PBSN2SB18
Royal (ASTM #8)	PBSN5SB15
Heavy Pressure (ASTM #7)	PBSN10SB15
Special Sawguide	PBSN10SB19

Tin Based Alloys - Chemical Composition (%) Chart

INDUSTRY NAME	ASTM B23	Sn (Tin)	Sb (Antimony)	Cu (Copper)	Pb (Lead)
Marine 11 D	-	90.0 - 92.0	4.5 - 5.5	3.5 - 4.5	0.35 (Max)
No. 1	Grade 1	90.0 - 92.0	4.0 - 5.0	4.0 - 5.0	0.35 (Max)
Marine 11R	-	89.0 - 89.5	7.5 - 8.5	2.5 - 3.0	0.35 (Max)
Nickel Genuine	Grade 2	88.0 - 90.0	7.0 - 8.0	3.0 - 4.0	0.35 (Max)
Marine 11	-	88.0 - 90.0	5.5 - 6.0	5.0 - 5.5	0.35 (Max)
4X Royal Nickel Genuine	-	87.5 - 89.5	7.25 - 7.75	3.25 - 3.75	0.35 (Max)
Diesel Special	-	87.5 - 88.0	6.5 - 7.0	5.0 - 6.0	0.35 (Max)
No. 11	Grade 11	86.0 - 89.0	6.0 - 7.5	5.0 - 6.5	0.35 (Max)
SAE 11	-	85.0 - 87.0	7.0 - 8.0	6.0 - 7.0	0.35 (Max)
Imperial Genuine	-	85.0 - 87.0	6.5 - 7.5	6.5 - 7.5	0.35 (Max)
Turbine	-	84.0 - 86.0	6.5 - 7.5	7.5 - 8.5	0.35 (Max)
Royal Armature	-	83.5 - 84.0	8.0 - 8.5	7.5 - 8.5	0.35 (Max)
Super Tough	Grade 3	83.0 - 85.0	7.5 - 8.5	7.5 - 8.5	0.35 (Max)

Maximum Allowable Impurities: Fe=0.08, As=0.10, Bi=0.08, Zn=0.005, Al=0.005, Cd=0.05

From Ounces to Tons No job too big or too small

390 Millen Road, Rear Unit, Stoney Creek, Ontario, L8E 2P7

Toll free 866-979-7911 Phone 905 297 7911 Fax 905 385 2614

Email: info@alchemyextrusions.com

Lead Based Alloys - Chemical Composition (%) Chart

INDUSTRY NAME	ASTM B23	Sn	Sb	Pb	As
		(Tin)	(Antimony)	(Lead)	(Arsenic)
No. 13	Grade 13	5.5 - 6.5	9.5 - 10.5	Balance	0.25 (Max)
Mill Anchor	-	4.0 - 6.0	11.5 - 12.5	Balance	0.25 (Max)
Durite	Grade 15	0.8 - 1.2	14.5 - 17.5	Balance	0.8 - 1.4
Star	-	5.0 - 5.5	13.5 - 14.5	Balance	0.30 - 0.60
Silverstone	-	1.0 - 3.0	17.5 - 18.5	Balance	0.25 (Max)
Royal	Grade 8	4.5 - 5.5	14.0 - 16.0	Balance	0.30 - 0.60
Heavy Pressure	Grade 7	9.3 - 10.7	14.0 - 16.0	Balance	0.30 - 0.60
Special Sawguide	-	9.0 - 11.0	18.5 - 19.5	Balance	0.25 (Max)

Maximum Allowable Impurities: Cu=0.50, Fe=0.10, Bi=0.10, Zn=0.005, Al=0.005, Cd=0.05

In selecting the proper type of Babbitt for a particular job there are a number of factors to take into consideration, the most import of which are as follows:

- 1. Surface speed of the SHAFT
- 2. Load bearing is required to carry

Secondly, but no less important, the following points must also be taken into account:

A. Continuity of service	D. Lubrication
B. Bonding possibilities	E. Cleanliness
C. Cooling facilities	F. Attention given to the bearings in question

There is no doubt that if a bearing be highly loaded in relation to its size, a high tin alloy is desirable; whereas for much slower speed work and less heavily loaded bearings, a lead-base one may be employed, and is far more economical.

1. Surface speed of the shaft: (The number of feet traveled per minute by the shaft circumferentially.)

Formula:	<u>Pi x D x RPM</u> 12	= S	Pi = 3.1416 D = Diameter of Shaft RPM = Revolutions Per Minute S = Surface speed of the Shaft	
Example:	Determine the surface of a 2 inch diameter shaft going 1,400 RPM			
	<u>PIXDXRPM</u>	= <u>3.141</u>	<u>6 X Z X 1,400</u> = 733.04 Ft/min	
	12		12	

2. Load Bearing is required to carry: (The weight which is being exerted through the combined weights of the shaft and any other direct weights on the shaft and measured in pounds per square inch.)

Formula: \underline{W}
I.D x L.O.B.= L $W = Total weight carried by bearing
I.D = Inside diameter of bearing
L = Load bearing required to carry
L.O.B = Length of BearingExample:Determine the load on a bearing of a 2 inch I.D bearing,
5 inches long and carrying a weight of 3,100 lbs
<math>\underline{W}$
I.D x L.O.B.= 3,100 = 310 Lbs/sg.in
2 x 5

There are many formulas for standard grade babbitts but they fall into two main classifications:

Babbitt Classification	LIMITS			
	Surface Speeds		LOAD	
	(# of Ft/min)		(Lbs/sq.in.)	
	MIN.	MAX.	MIN.	MAX.
Tin-Based Babbitts	1,000	2,400	100	2,000
Lead Based Babbitts	100	1,000	100	500